Asymptotic ????-soliton-like solutions of the Zakharov-Kuznetsov type equations

نویسندگان

چکیده

We study here the Zakharov-Kuznetsov equation in dimension 2 2 , alttext="3"> 3 encoding="application/x-tex">3 and alttext="4"> 4 encoding="application/x-tex">4 modified . Those equations admit solitons, characterized by their velocity shift. Given parameters of alttext="upper K"> K encoding="application/x-tex">K solitons R Superscript k"> R k encoding="application/x-tex">R^k (with distinct velocities), we prove existence uniqueness a multi-soliton alttext="u"> u encoding="application/x-tex">u such that ? stretchy="false">( t stretchy="false">) ? . encoding="application/x-tex">\| u(t) - \sum _{k=1}^K R^k(t) \|_{H^1} \to \quad \text {as} +\infty . \] The convergence takes place s"> s encoding="application/x-tex">H^s with an exponential rate for all alttext="s greater-than-or-equal-to 0"> ?<!-- ? encoding="application/x-tex">s \ge 0 construction is made successive approximations multi-soliton. use classical arguments to control 1"> encoding="application/x-tex">H^1 -norms errors (inspired Martel [Amer. J. Math. 127 (2005), pp. 1103–1140]), introduce new ingredient -norm alttext="d 2"> d encoding="application/x-tex">d\geq 2 technique close monotonicity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions to (3+1) Conformable Time Fractional Jimbo-miwa, Zakharov-kuznetsov and Modified Zakharov-kuznetsov Equations

Exact solutions to conformable time fractional (3+1)dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE. The resultant polynomial equation is solved by using algebrai...

متن کامل

Asymptotic Behavior for a Class of Solutions to the Critical Modified Zakharov-kuznetsov Equation

We consider the initial value problem (IVP) associated to the modified Zakharov-Kuznetsov (mZK) equation ut + 6uux + uxxx + uxyy = 0, (x, y) ∈ R, t ∈ R, which is known to have global solution for given data in u(x, y, 0) = u0(x, y) ∈ H(R) satisfying ‖u0‖L2 < √ 3‖φ‖L2 , where φ is a solitary wave solution. In this work, the issue of the asymptotic behavior of the solutions of the modified Zakhar...

متن کامل

Water Wave Solutions of the Coupled System Zakharov-Kuznetsov and Generalized Coupled KdV Equations

An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solution...

متن کامل

The Transverse Instability of Periodic Waves in Zakharov-Kuznetsov Type Equations

In this paper, we investigate the instability of one-dimensionally stable periodic traveling wave solutions of the generalized Korteweg-de Vries equation to long wavelength transverse perturbations in the generalized Zakharov-Kuznetsov equation in two space dimensions. By deriving appropriate asymptotic expansions of the periodic Evans function, we derive an index which yields sufficient condit...

متن کامل

Exact Travelling Wave Solutions for a Modified Zakharov–Kuznetsov Equation

The modied Zakharov–Kuznetsov (mZK) equation, ut + uux + uxxx + uxyy = 0, (1) represents an anisotropic two-dimensional generalization of the Korteweg–de Vries equation and can be derived in a magnetized plasma for small amplitude Alfvén waves at a critical angle to the undisturbed magnetic field, and has been studied by many authors because of its importance [1–5]. However, Eq. (1) possesses m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2021

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8331